Hierarchical Self-Assembly of Cholesterol-DNA Nanorods

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self - Assembly of Gold Nanorods

Self-assembly of gold nanorods (NRs) with aspect ratio of ∼4.6 (12 nm in diameter and 50-60 nm in length) has been studied using transmission electron microscopy (TEM). Under appropriate conditions such as nanoparticle concentration, solvent evaporation, narrow size distribution, ionic strength, and surfactant concentration of the parent solution, gold nanorods assemble into one-, two-, and thr...

متن کامل

Self-assembling DNA-caged particles: nanoblocks for hierarchical self-assembly.

DNA is an ideal candidate to organize matter on the nanoscale, primarily due to the specificity and complexity of DNA based interactions. Recent advances in this direction include the self-assembly of colloidal crystals using DNA grafted particles. In this paper we theoretically study the self-assembly of DNA-caged particles. These nanoblocks combine DNA grafted particles with more complicated ...

متن کامل

Graphene mediated self-assembly of fullerene nanorods.

A simple procedure for solution-based self-assembly of C60 fullerene nanorods on graphene substrates is presented. Using a combination of electron microscopy, X-ray diffraction and Raman spectroscopy, it is shown that the size, shape and morphology of the nanorods can be suitably modified by controlling the kinetics of self-assembly.

متن کامل

Self-assembly of polymer-tethered nanorods.

We present results of molecular simulations that predict the phases formed by self-assembly of nanorods functionalized by a polymer "tether." Microphase separation of the immiscible tethers and rods coupled with the liquid crystal ordering of the rods induces the formation of a cubic phase, a smectic C phase, a tetragonally perforated lamellar phase, and a honeycomb phase; the latter two have b...

متن کامل

Self-assembly of laterally-tethered nanorods.

We report results from a computational study of laterally tethered nanorod "shape amphiphiles". Our simulations predict that the model nanorods self-assemble into stepped-ribbon-like micelles, a centered rectangular stepped-ribbon phase, and two structurally different liquid crystalline bilayer phases: one in which the bilayers have C(mm) symmetry and another in which they have P(2) symmetry. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioconjugate Chemistry

سال: 2019

ISSN: 1043-1802,1520-4812

DOI: 10.1021/acs.bioconjchem.9b00322